Complications of Transfusion

Emily Schindler, MD, PhD
Mercy Hospital St. Louis
April 5, 2016
What is a transfusion reaction?

- Includes any adverse reaction to transfusion
- Can present with a broad range of symptoms
- The same symptoms may be seen with different types of reactions
- Some symptoms (i.e. fever) could be the first sign of a mild reaction or a life-threatening reaction
- Because it is impossible to determine at the time which type of reaction is occurring

the transfusion MUST BE STOPPED for any reaction.

(Except isolated hives.)
Is it really that bad? Yes.

Figure 1: Transfusion-Related Fatalities by Complication, FY2010 through FY2014

“Fatalities reported to the FDA Following Blood Collection and Transfusion: Annual Summary for Fiscal Year 2014.”
Good News

• Transfusion reactions usually fit into a recognizable category that experts agree on
 – Examples: allergic, bacterial

• Recognizing patterns has allowed us to detect and even prevent reactions

• Timely and accurate recognition results in appropriate ancillary testing and clinical response
Bad News

• The US is slow to catch up to other nations regarding standardized definitions and required reporting of reactions
• Most transfusion services do not have explicit definitions for each reaction
• With multiple pathologists taking call at most sites, there is opportunity for inconsistency
Lab Work-Up

• Clerical check
• Direct Anti-globulin Test (DAT)
• Check for visible hemolysis
• +/- Check for urine hemoglobin
Lab Work-Up

- Clerical check
- Direct Anti-globulin Test (DAT)
- Check for visible hemolysis
- +/- Check for urine hemoglobin

Interpretation?
Ancillary tests?
Transfusion recommendations?
National Healthcare Safety Network
Hemovigilance Module

• Introduced by the CDC in 2009
• Purpose = national surveillance of transfusion associated adverse events
• Goals =
 – Improve patient safety
 – Minimize morbidity and mortality
 – Identify emerging complications and pathogens
• Requires a common definition of each reaction type
Getting Involved

• Any facility where patients receive transfusions may participate
• Training is required (online or in-person)
• Reporting to CDC does **NOT** replace mandatory or regulatory reporting requirements of the FDA, your state, or other regulatory agencies.
• To get started, it is necessary to determine if your facility is enrolled in another NHSN program. Likely, the answer is yes, via infection prevention.
Benefits of Participation

- Uniform reporting and documentation of facility adverse events, which may lead to better monitoring and easier identification of areas needing intervention
- Access to CDC aggregate surveillance data for peer-to-peer comparisons
Hemovigilance Module Key Terms

- **Adverse event**: An unintended and undesirable occurrence before, during or after transfusion of blood or blood components. Includes incidents and adverse reactions.

- **Adverse reaction**: An undesirable response or effect in a patient temporally associated with the administration of blood or blood components. It may or may not be the result of an incident.

- **Incident**: Any error or accident that could affect the quality or efficacy of the blood, blood components, or patient transfusions. It may or may not result in an adverse reaction.

- **Near miss**: A subset of incidents that are discovered before the start of a transfusion that *could* have led to a wrongful transfusion or adverse reaction.
Figure 1. Venn diagram of NHSN Hemovigilance Module surveillance terms.

- **Transfusion-Related Activities**
 - Patient Sample Collection
 - Sample Handling and Testing
 - Inventory Management
 - Patient Monitoring

- **Transfusion**
 - Number of Components
 - Number of Patients

- **Adverse Events**
 - **Reactions**
 - **Incidents**
 - Near Miss Incidents
 - Incidents Related to Transfusion (No Adverse Reaction)
 - Incidents Related to Transfusion and Adverse Reaction
Data Reporting Requirements

• At least 12 months of continuous surveillance
• An annual facility demographic and practice survey for each calendar year
• ALL adverse reactions that follow transfusion at or by your facility
• ALL incidents (ie errors or accidents) associated with an adverse reaction
• The number of blood components transfused or discarded and patient samples collected for type and screen or crossmatch each month
Reporting Adverse Reactions

• All CDC defined adverse reactions that are possibly, probably or definitely related to a transfusion performed by the participating facility must be reported
• Reports should be made after investigation is complete
• Reports should be made within 30 days
• Adverse reactions must be classified according to CDC Hemovigilance Protocol
Using the HSHN Protocol

• Research by the AABB has shown this classification system is difficult for even trained participants to apply (AuBuchon, 2014)
 – 60 – 70% matched “expert” classification of fictional adverse events

• May be attributable to the fact that surveillance definitions do not always match clinical definitions.
CDC Defined Adverse Reactions

- Transfusion-associated circulatory overload (TACO)
- Transfusion-related acute lung injury (TRALI)
- Transfusion-associated dyspnea (TAD)
- Allergic reaction
- Hypotensive transfusion reaction
- Febrile non-hemolytic transfusion reaction (FNHTR)
- Acute hemolytic transfusion reaction (AHTR)
- Delayed hemolytic transfusion reaction (DHTR)
- Delayed serologic transfusion reaction (DSTR)
- Transfusion-associated graft vs. host disease (TAGVHD)
- Post-transfusion purpura (PTP)
- Transfusion-transmitted infection (TTI)
Reporting Criteria

• Case definition:
 – Definitive, probable, or possible

• Severity:
 – Non-severe, severe, life-threatening, death or not determined

• Imputability:
 – Definitive, Probable or Possible
 – Optional categories include doubtful, ruled-out and not determined.
Transfusion Associated Graft Versus Host Disease (TA-GVHD)

- Viable lymphocytes in transfused blood engraft in recipient and attack host tissues
- Usually immunocompromised recipient
- Can happen in immunocompetent recipients when donor HLA is not recognized as foreign
- ~100% fatal
- No treatment
- **Irradiation** is used to prevent this complication
Transfusion Associated Graft Versus Host Disease (TA-GVHD)

• Clinical syndrome that occurs 2 days to 6 weeks following cessation of transfusion including
 – Characteristic rash
 – Diarrhea
 – Fever
 – Hepatomegaly
 – Liver dysfunction
 – Marrow aplasia
 – Pancytopenia

• **And** characteristic histologic appearance of liver biopsy
Transfusion Related Acute Lung Injury

• Non-cardiogenic pulmonary edema
• Caused by a combination of
 • Donor antibodies against HLA or granulocyte specific antigens
 • “Priming” of neutrophils by a stress event (i.e. sepsis, surgery, etc.) which makes them stick to capillary walls in lungs
• Chest X-ray helpful in diagnosis
• Managed with supportive care
 • Oxygen by nasal cannula (100%), ventilation (75%)
 • Mortality est. 5 – 10%
• May be confused with anaphylaxis, TACO and transfusion-related sepsis.
Transfusion Related Acute Lung Injury

• No evidence of acute lung injury prior to transfusion **and**
• Onset within 6 hours of transfusion **and**
• Hypoxemia (<90% O₂ sat) **and**
• Radiographic evidence of bilateral infiltrates **and**
• No evidence of circulatory overload
Transfusion Related Acute Lung Injury

• Lab work up includes HLA (+/- Human Neutrophil Antigen) typing of recipient and testing of donor for anti-HLA (+/- anti-HNA) antibodies
 • Donors form antibodies in response to exposure to foreign HLA/HNA via pregnancy or transfusion

• Any splits of the unit must be withdrawn

• Implicated donor permanently deferred
Transfusion Related Acute Lung Injury

• Fatalities from TRALI should be reported to CBER in accordance with 21 CFR 606.170(b).
 • Must notify by phone, fax, mail or email “as soon as possible”
 • Written report due within 7 days of fatality

• The FDA encourages voluntary reporting of TRALI as a serious adverse reaction to transfusion.
Transfusion Associated Circulatory Overload

• Due to the administration of too much fluid or too rapid administration of fluid
• Patients with small blood volume (children) and compromised cardiovascular systems are at greatest risk
• Shortness of breath, edema, hypertension, and congestion on chest x-ray are symptoms
• Responds to diuretic treatment
• Supportive measures include oxygen
Transfusion Associated Circulatory Overload

• New onset or worsening of or more of the following:
 – Acute respiratory distress
 – Elevated BNP
 – Elevated central venous pressure
 – Evidence of left heart failure
 – Evidence of positive fluid balance
 – Radiographic evidence of pulmonary edema
AABB Standards on TACO

• Standard 5.19.7
 – “The BB/TS shall have a policy for responding to requests for product for patients identified by the ordering physician or other authorized health professional as being at increased risk for TACO.”

• Do you have a written policy that addresses TACO?
Transfusion Associated Dyspnea (TAD)

• Acute respiratory distress occurring within 24 hours of cessation of transfusion AND
• Allergic reaction, TACO, and TRALI are not applicable
• “Bucket” category to catch reactions that don’t quite meet threshold for above categories and emerging reactions.
Acute Hemolytic Transfusion Reaction

- Frequency estimated at 1/10,000 – 50,000 units
- Patient usually lives if prompt recognition occurs; reaction severity depends on strength of antibody and amount of blood transfused
- Most fatalities associated with > 200 mL transfusion
- Most common cause = failure to correctly identify recipient
- Commonest site of error = operating room
Acute Hemolytic Transfusion Reaction

- May be caused by ABO incompatibility or other blood group incompatibilities
 - Usually ABO antibodies in recipient, but rare cases of high titer O cells transfused to A, B or AB patients have been reported to cause hemolysis
- Recipient antibodies react against antigen on donor cells
- Complement is activated
- Intravascular hemolysis ensues
- Disseminated intravascular coagulation and renal failure occur
- Can present in a variety of ways:
 - “sense of impending doom” often reported, fever, flank pain, hematuria, severe hypotension
Acute Hemolytic Transfusion Reaction

• The more blood that is given, the worse the reaction is and the more likely the patient is to die.

• Patient Management
 – Fluids given to help maintain renal function
 – Drugs to maintain renal function
 – Medications given to support blood pressure if needed
 – Debatable: alkalinization of urine, transfusion of blood products, heparin
Acute Hemolytic Transfusion Reaction

• Occurs during or within 24 hours of cessation of transfusion with new onset of ANY of the following:
 • Back/flank pain
 • Chills/rigors
 • Disseminated intravascular coagulation
 • Nosebleed
 • Fever
 • Hematuria
 • Hypotension
 • Oliguria/anuria
 • Pain/oozing at IV site
 • Renal failure
 • AND
Acute Hemolytic Transfusion Reaction

• Two or more of the following:
 • Decreased fibrinogen
 • Decreased haptoglobin
 • Elevated bilirubin
 • Elevated LDH
 • Hemoglobinemia
 • Hemoglobinuria
 • Plasma discoloration consistent with hemolysis
 • Spherocytes on blood film
• **AND EITHER**
Acute Hemolytic Transfusion Reaction

Immune mediated:
- Positive DAT for anti-IgG or anti-C3
- **AND** positive elution test with antibody present on transfused cells

Non-Immune mediated:
- Serologic testing is negative
- Physical cause is confirmed
 - Thermal
 - Osmotic
 - Mechanical
 - Chemical
Drug Mediated AHTRs

• 1/ 1 million transfusions
• Many drugs have been implicated
• Drugs may induce formation of antibody
 – Against drug itself
 – Against red cell membrane components
 – Or against a combo antigen
• DAT may be + or –
• +/- Immune mediated destruction
Drug Mediated AHTRs

• Treatment
 – Supportive
 – Discontinue suspected drug

• Testing
 – May need to send out for special testing
 – DAT in presence of drug
 – If drug association has already been reported, testing may be available through your reference lab
Non-Immune Causes of AHTRs

• Thermal
 – Red cells destroyed if exposed to > 50\(^\circ\) C.
 – Reports of warming units in a water bath or microwave (!)
 – Blood may be accidentally frozen, causing hemolysis. Can cause cardiac arrhythmia if blood is too cold when infused.

• Osmotic
 – IV or surgical introduction of distilled water
 – Insufficiently deglycerolized red cells
Non-Immune Causes of AHTRs

• Mechanical
 – Transfusion of cells with intrinsic membrane defects
 – Transfusion through a narrow gauge needle

• Chemical
 – Transfusion concurrent with fluids other than normal saline
Delayed Hemolytic Transfusion Reaction

- Estimated at 1/1,500 – 12,000 transfusions
- May be fatal, especially with large volume transfusion
- Very similar to acute hemolytic transfusion reaction, except complement is not activated.
- RBC destruction is extravascular (in the spleen)
- Clinical symptoms are much milder and may not be present at all
- Lab confirmation: +DAT, ↓hemoglobin, ↑LDH, ↓haptoglobin, ↑visible hemolysis in serum and urine, + eluate
Delayed Hemolytic Transfusion Reaction

- Positive DAT for antibodies developed between 24 hours and 28 days after cessation of transfusion
- **And either** positive elution test with antibody on transfused RBCs
- **Or** newly identified red blood cell antibody
- **And either** inadequate post transfusion rise in hemoglobin levels or rapid fall back to pre-transfusion levels
- **Or** otherwise unexplained appearance of spherocytes
Delayed Hemolytic Transfusion Reaction

- Paradoxically, no free antibody may be detected for several days post transfusion
- Autoantibodies have been reported to arise in the situation of DHTR, complicating the workup
Delayed Serologic Transfusion Reaction

- Estimated at 1/3,000 transfusions
- Absence of clinical signs and symptoms of hemolysis and
- Demonstration of new antibodies against RBCs by either
 - Positive DAT
 - Positive antibody screen
- Definition is highly dependent upon what is clinically sought (daily bilirubin, icterus?)
Transfusion Transmitted Infection

- Bacterial infection
 - Thought to be caused by
 - Asymptomatic bacteremia in donor
 - Introduction of skin flora from skin plug during phlebotomy of donor
 - Contamination during processing
 - Platelets are by far the most commonly implicated product for bacterial contamination
 - Bacterial sepsis will usually present with acute shock during transfusion
- Other infections are carried in the plasma or the white cells and usually present later
Transfusion Transmitted Infection

- Laboratory evidence of a pathogen in a transfusion recipient

Pathogens of well-documented importance in blood safety.

These pathogens have public health significance for hemovigilance, are well-documented blood stream pathogens, and/or are routinely screened for in blood donors. A full list of potentially infectious organisms is available in the drop-down pathogen list in NHSN.

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Viral</th>
<th>Parasitic</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter cloacae</td>
<td>Cytomegalovirus (CMV)</td>
<td>Babesiosis (Babesia spp.)</td>
<td>Creutzfeldt-Jakob Disease, Variant (vCJD)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Enterovirus spp.</td>
<td>Chagas disease
(Trypanosoma cruzi)</td>
<td></td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>Epstein Barr (EBV)</td>
<td>Malaria (Plasmodium spp.)</td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Hepatitis A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Hepatitis B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>Hepatitis C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Human Immunodeficiency Virus 1 (HIV-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Human Immunodeficiency Virus 2 (HIV-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus lugdunensis</td>
<td>Human Parvovirus B-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilis (Treponema pallidum)</td>
<td>Human T-Cell Lymphotropic Virus-1 (HTLV-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>Human T-Cell Lymphotropic Virus-2 (HTLV-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Nile Virus (WNV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zika!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk of Acquiring a Transfusion Transmitted Infection

- Hepatitis A = 1/ 10 million units
- Hepatitis B = 1/ 30,000 to 1/250,000 units
- Hepatitis C = 1/ 2 million units
- HIV = 1/ 2 million units
- HTLV = 1/ 2 million units
- Malaria = 1/ 4 million units
Spectrum of Allergic Reactions

- **Mild**
 - Rash or hives (1% of transfusions)
- **Severe (1/20,000 transfusions)**
 - Angioedema
 - Drop in blood pressure
 - Difficulty breathing
 - Includes cough
- Most commonly caused by allergy to protein in transfused plasma
Allergic Reaction

• 2 or more of the following:
 – Conjunctival edema
 – Edema of lips/tongue/uvula
 – Erythema & edema around eyes
 – Generalized flushing
 – Drop in blood pressure
 – Localized edema
 – Rash
 – Itching
 – Respiratory distress
 – Urticaria (hives)
Treatments for Allergic Reaction

• Little data to guide treatment of allergic transfusion reaction
• Benadryl (PO or IV Push)
 – Can give at time of reaction or as a preventative in person with history of allergic reactions
• Corticosteroids
• Epinephrine
• Oxygen, intubation
• Washed products
IgA Deficiency and Transfusion

• Selective IgA deficiency is the most common primary immunodeficiency in the US
• Not all individuals who have clinical IgA deficiency have blood-bank concern-worthy IgA deficiency
• Class specific anti-IgA antibodies only develop in people with extremely low IgA (usually < 0.05 mg/dL)
• Routine IgA assays only go down to <7 mg/dL.
 – This is NOT sufficient testing to determine the patient’s risk of developing an anaphylactic reaction to blood products!
• Anti-IgA antibodies can occur naturally, so bad reactions can happen with the first transfusion.
Lab Workup of IgA Deficiency

• Ask, is this the patient’s first or second transfusion?
 – If the patient has been multiply transfused, this reaction is unlikely to be caused by IgA deficiency.

• Obtain in house IgA level, if available.

• If below detectable limit of in house assay, send out for highly-sensitive IgA level and anti-IgA antibodies.

• Very few labs do these tests and reagents sometimes go out of supply.
Prevention of Anaphylaxis in IgA Deficient Patients

• Frozen, deglycerolyzed RBCs
• Rare donor registry to obtain frozen plasma containing products
• Once identified, patients should wear medic alert band
• If plasma containing products are needed in an emergency, difficult decisions will need to be made
Other Proteins and Substances Implicated in Allergic Reaction

• Haptoglobin (seen in Asians)
• Environmental allergens such as dust, pollen, milk and egg
• Hypersensitivity reaction due to passively acquired (transfused) IgE antibodies from donor seen for environmental (horses, peanuts) and drug (penicillin) allergens
Hypotensive Transfusion Reaction

• All other adverse reactions presenting with hypotension are excluded AND hypotension occurs within 1 hour after cessation of transfusion

• Adults: drop in systolic BP > 30 mmHg and systolic BP < 80 mmHg

• Children 1 yr – 18 yr: Greater than 25% drop in systolic BP from baseline

• Neonates and small infants (less than 1 yr OR any age and < 12 kg): Greater than 25% drop in baseline value using whichever measurement is being recorded (eg mean BP)
Hypotensive Transfusion Reaction

- Exact etiology unknown
- May represent common feature of several reaction pathways
- One hypothesis:
 - Bradykinin is a peptide which causes vasodilation
 - Many patients are on ACE inhibitors
 - ACE normally regulates the amount of bradykinin through hydrolysis
 - Transfused plasma undergoes contact activation, generating even more bradykinin
 - With ACE function inhibited, vasodilation is promoted by increased bradykinin
Hypotensive Transfusion Reaction

- Bedside leukoreduction filters have been implicated, particularly in patients on ACE inhibitors
- However, many hypotensive reactions are observed in patients not on ACE inhibitors, not receiving blood through a leukocyte filter
Febrile Non-hemolytic Transfusion Reaction (FNHTR)

- Occurs within 4 hours of cessation of transfusion
- Fever (> 38°C) **AND** a change of at least 1°C
- **OR** chills/rigors
- Most are benign, however fever can be the first sign of a severe reaction
- FNHTR is a diagnosis of exclusion
- Treated with antipyretics (Tylenol) and drugs to raise shivering threshold (Meperidine).
 - Such treatment not shown to mask serious reactions
Febrile Non-hemolytic Transfusion Reaction (FNHTR)

• Caused by anti-leukocyte antibodies in the recipient and/or accumulated cytokines in the blood product
• Cytokine release is the common event leading to fever
• Prestorage leukocyte reduction is an effective preventative tool
Post Transfusion Purpura

- Severe thrombocytopenia occurring in the first 3 weeks after transfusion in patient with history of exposure through pregnancy or transfusion
- Patient attacks foreign platelet antigen (usually HPA-1a)
- Patient’s own platelets are also destroyed
- Platelet count usually below 10,000
- Treatment is immunosuppression
Post Transfusion Purpura

• Alloantibodies in patient directed against specific antigens on platelets detected at or after development of thrombocytopenia

• **AND** thrombocytopenia
Post Transfusion Purpura

- Anti HPA-1a is the most commonly implicated antibody
- Uniquely, in addition to destroying foreign antigen bearing platelets, the recipient’s own antigen negative platelets are destroyed as well
- IVIG is first line treatment
- If transfusion is necessary, antigen negative platelets should be used, with recognition that decreased survival is expected
- Future transfusions should be with antigen negative units.
Post Transfusion Purpura

- Diagnostic testing
 - Many different methods for testing exist (flow cytometry, solid phase assay)
 - Key is to test for anti-platelet antibodies and to determine recipient genotype
 - Performed by a reference lab, with turn around time of ~ 1 week
Air Embolus

• Rare but life-threatening
• Not covered in NHSN guidelines
• Caused by air infusion in line
• Sudden shortness of breath, acute cyanosis, pain, cough, hypotension, abnormal heart rhythm
• Place patient on left side with legs above chest and head
Hypocalcemia

• Caused by rapid citrate infusion (massive transfusion, decreased citrate metabolism, apheresis)
• Perioral tingling, paresthesias, tetany, arrhythmia, seizure
• Diagnostic testing: ionized calcium, prolonged QT on electrocardiogram
• Oral calcium for mild symptoms, slow calcium infusion for more severe cases
Iron Overload

- Typically seen after > 100 units transfused
- Presents with diabetes, cirrhosis, cardiomyopathy
- Diagnostic tests: serum ferritin, liver enzymes, endocrine function tests
- Treatment: Iron chelation
References

Technical Manual, 18th edition. AABB.